Polarization properties of single and ensembles of InAs/InP quantum rod nanowires emitting in the telecom wavelengths

Abstract

The absorption and emission polarization properties of InAs quantum rods embedded in InP nanowires (NWs) are investigated by mean of (micro-)photoluminescence spectroscopy. It is shown that the degree of linear polarization of emission (0.94) and absorption (0.5) of a single NW can be explained by the photonic nature of the NW structure. Knowing these parameters, optical properties of single NWs and ordered ensembles of these NWs can be correlated one to another via proposed model, so that polarization properties of NWs can be studied using ordered ensembles on as-grown samples. As an example, the polarization anisotropy is investigated as a function of the excitation wavelength on a NW ensemble and found to be in agreement with theoretical prediction.

Journal of Applied Physics 113, 193101 (2013)
Roman Anufriev
Roman Anufriev
Project Associate Professor